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G E N E R A L  DECOMPOSITION THEOREMS FOR 
m-CONVEX SETS IN THE PLANE 

BY 

M A R I L Y N  B R E E N  A N D  D A V I D  C. K A Y  

ABSTRACT 

A set S in R d is said to be m-convex,  m _-> 2, if and only if for every m distinct 
points in S, at least one of the line segments  determined by these points  lies in S. 
Clearly any union of m - 1 convex sets is m-convex,  yet the converse is false 
and has inspired some interesting mathematical  questions: Under  what condi- 
tions will an m-convex set be decomposable  into m - 1 convex sets? And  for 
every m _-__ 2, does there exist a cr(m ) such that every m-convex  set is a union of 
o-(m) convex sets? Pathological examples  convince the reader to restrict his 
at tention to closed sets of dimension _<- 3, and this paper  provides answers to the 
quest ions above for closed subsets  of the plane. 

If S is a closed m-convex  set in the plane, m _-> 2, the first question may be 
answered in one way by the following result: If there is some line H support ing 
S at a point p in the kernel of  S, then S is a union of m - 1 convex sets. Using 
this result, it is possible to prove several decomposit ion theorems for S under  
varying conditions. Finally, an answer to the second quest ion is given: If m _-> 3, 
then S is a union of (m - 1)32 ~-3 or fewer convex sets. 

I. Introduction 

Let S be a subset of R u. The set S is said to be m-convex, m >= 2, if and only if 

for every m distinct points in S, at least one of the line segments determined by 

these points lies in S. A point x in S is said to be a pointoflocalconvexity orS if 

and only if there is some neighborhood N of x such that if y, z E S N N, then 

[y, z ] C_ S. If S fails to be locally convex at some point q in S, then q is called a 

point of local nonconvexity (lnc point) of S. The following familiar terminology 

will be used: For x, y in S, we say x sees y via S if and only if the corresponding 

segment [x, y] lies in S. Points x , . . . ,  x, in S are visually independent via S if 

and only if for 1 =< i < j < n, x~ does not see xj via S. Throughout the paper, 

conv S, ker S, bdry S, and cl S will be used to denote the convex hull of S, the 

kernel of S, the boundary of S, and the closure of S, respectively. For 

convenience, Q will represent the set of Inc points of S. 
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Several interesting decomposition theorems have been obtained for closed 

3-convex sets in the plane. Valentine [9] has proved that a closed planar 

3-convex set S may be written as a union of three or fewer convex sets. If, in 

addition, S is bounded and has some point of local convexity in bdry S n ker S, 

then by a result of Stamey and Marr [7], S is a union of two convex sets. 

F o r m - c o n v e x  sets, we have the following analogue (Breen, [1]): For S a 

closed planar m-co'nvex set with lnc points in O, if conv Q C S  and 

[ (bd ryS)n  ( k e r S ) ] - Q ~ ,  then S is a union of m -  1 closed convex sets. 

However, few other results have been obtained for the general case. Examples 

by Kay and Guay [5, Example 4] show that such a generalization must require an 

unpleasantly large number of convex sets, and it was only recently proved by 

Eggleston [2] that a compact planar m-convex set is expressible as a finite union 

of convex sets. Here we establish actual bounds for Eggleston's theorem using 

entirely different methods of proof. Several smaller bounds are obtained in case 

ker S ~ O or cony Q _c S. Also, for m = 4, the bound of 6 is established. 

2. The case for k e r S ~  O 

Theorem 1 employs a basic construction introduced in [1] to generalize a 

result of that paper. The following theorem by Lawrence, Hare and Kenelly [6, 

Theorem 2] will be useful throughout the proof. 

LAWRENCE, HARE, KENELLY THEOREM. Let T be a subset of a linear space 

such that each finite subset F C_ T has a k-partition {F~, • •., Fk}, where cony F~ C_ 

T, 1 <-_ i <-_ k. Then T is a union of k convex sets. 

THEOREM 1. Let S be a closed m-convex set in the plane, m >-2. Let 

p E ker S ~ O, and for H some line containing p, assume that S C_ cl H1 (where HI 

is one of the open halfspaces determined by H).  Then S is the union of m - 1  

convex sets. The result is best possible for all m. 

PROOF. The proof will require several steps: First we show that we may 

assume S to be bounded and Q to be finite (Lemma 1), with p ~  Q (Lemma 2). 

Then we consider the collection of rays at p consisting of rays of the form 

R (p, qi) for qi in Q, together with rays R~ and R2, where R t U R 2 = H. Order the 

rays appropriately. Each pair of consecutive rays will define a convex subset of S 

called a wedge, and we decompose S by defining m - 1 collections of wedges 

(Lemmas 3 and 4). 

We begin by noticing that we may restrict our attention to the case in which S 

is bounded: For F any finite subset of S, F lies in some compact disk B, B n S 
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satisfies the hypothesis above, and by the Lawrence, Hare, Kenelly Theorem it 

suffices to prove the result for B n S. Therefore we shall assume that S is 

bounded. 

LEMMA 1. TO any finite subset F = {x,: 1 <-_ i <= n} of  S there corresponds an 
m-convex set T having finitely many lnc points, with F C_ T C_ S. Hence we may 

assume that S has finitely many lnc points. 

PROOF OF LEMMA 1. Let R1, R2 be closed rays at p, with R1 U R2 = H. Con- 

sider the family ~ of rays consisting of R1, R~ together with rays of the form 

R(p, q) emanating from p through q for some q in Q. It is not hard to show that 

for R in ~ ,  R contains at most two members of Q. Any two (not necessarily 

distinct) rays in fi9 bound a closed subset of S, and we let ~/g denote the 

collection of all these closed regions. Moreover, since Q is closed, to every point 

x of S there corresponds a minimal member A of°///" which contains x. 

Now let F = {xi: 1 _-< i _-< n} be a finite subset of S. To each x, there corres- 

ponds a minimal member A~ of °/4/" which contains x~. Each lnc point of S in A~ 

must lie in one of the boundary rays of A~; hence A~ contains at most four 

members of Q -  {p}. 

By arguments given in [1], we may assume that no A~ is a segment and also 

that A, = cl(intA,).  (In case p E Q, the A~ sets are not necessarily convex; 

however, standard arguments show each component of A~ - {p} to be convex.) 

Now order the rays associated with the A~ sets in a clockwise direction from R~ 

(for an appropriate labeling of R1, R2). This in turn induces an order among the 

A~ sets, and we may relabel the Ai and corresponding x~ so that for i < j, the rays 

defining A~ precede the rays defining Aj in our clockwise ordering. Since 

A, = cl (int A,),  then each wedge is associated with at most two lnc points from 

Q - {p}, denoted q,, q'~. (In case A, is associated with one lnc point in Q - {p}, 

then A~ must be bounded by R1 or R2, and then we let q~ be the last point of S 

on RI, q" the last point of S on Rz.) 
By the Lawrence, Hare, Kenelly Theorem, we may assume that each A~ has 

polygonal boundary, and we may select p,p', so that [p, qi] and [p'.q'~] lie in 

bdry A~. 

For l_-<iN n - 1 ,  let B, denote the union of all segments [x,y], where 

[x, y] _C S, x E [p, q'i], y E [p, q~+~]. We assert that (conv B , ) - B ~  is convex and 

(bdry cony B~) - B~ is polygonal: For s, t in (cony Bi) - B.  if [s, t] were not in 

(convB,)~  B,  then (s, t) would contain some point u in B~, and for some x in 

[p, q'.], y in [p, q.+~], u E (x, y) C_ S. But then one of s, t would lie on the p side of 
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the line L(x, y), clearly impossible since conv{p, x, y} C_ B,. Therefore [s, t] C 

( c o n v B , ) - B , ,  and the set is convex. Since S is closed, (bdry conv B~)-  

[q'~,q~+~] C_ S, and since S is m-convex, it is easy to see that (bdry convB~) -  

[q;, q,+~] is polygonal and consists of at most m - 1 segments. Hence the set B, 

has at most m - 2  lnc points. 

Define T = U{A~ U B~ U A, :  1 =< i =< n -  1}. We assert that T is closed and 

m-convex, that the set QT of lnc points of T is finite, and that p E ker T. For any 

m-point subset of T, at least one of the corresponding segments, say [v, w], is in 

S. We will show that Iv, w] _C T. In case v, w E A~ for some i, the result is trivial. 

If v, w E B~, then if (v, w) contained some point not in B~, (v, w) would contain 

two boundary points of (conv B~) - B,, neither in (q', q,+~). Thus the line L(v, w) 

would intersect both [p, q'~] and [p, q,+~], forcing [v, w] to lie in B,, a contradic- 

tion. Hence [v, w] C B,. 

In case v, w do not lie in the same A~ or B, set, then since conv {p, v, w} C_ S, no 

point of Q can lie interior to conv {p, v, w}. Therefore [v, w] must intersect each 

[p,q,] and [p,q;] between R(p, v) and R(p, w), and [v, w] can be written as a 

finite union of segments in $, each having end points in some A~ or B~ set. 

Therefore, by previous remarks, each of these segments is in T, and [v, w] C_ T. It 

is clear that QT is finite, since at most two lnc points are contributed by each 

A, ~ {p}, and at most m - 2  by each B~. 

Returning to a consideration of what will be needed to prove the theorem, in 

view of the Lawrence, Hare, Kenelly Theorem it suffices to prove that the set T 

just constructed is a union of m -  1 convex sets. Since clearly p E kerT,  

T C cl HI, and QT is finite, it is therefore sufficient to prove the theorem under 

the assumption that S is bounded and Q is finite. 

LEMMA 2. We may assume that p is not an lnc point for S. 

PROOF OF LEMMA 2. By Lemma 1, we may assume that the set Q of lnc 

points of S is finite, so we may select some convex neighborhood N of p such 

that N n Q - {p} is empty. Using standard arguments, it is easy to show that 

each component of N n S - {p} has convex closure, and by remarks in [1], we 

may assume that no such component is a segment. Then using the m-convexity 

of S, clearly S - {p} has at most m - 1 components $1,- • ", S~. Furthermore, it is 

easy to show that each set cl S, has at most m~ - 1 visually independent points 

and is m.-convex, where 2 =< m~ ==- m and where ~'=1 (m~ - 1) = m - 1. Certainly 

N n cl S, - {p} is convex, so p cannot be an lnc point for any cl S~. If we are able 

to show that each set cl S~ is decomposable into m~ - 1 convex sets, then S will be 



Vol. 24, 1976 DECOMPOSITION OF m-CONVEX SETS 221 

a union of E~=L (mi - 1) = m - 1 convex sets, finishing the argument. Hence it 

suffices to assume that p ~  Q, and the proof of Lemma 2 is complete. 

Now repeat the construction used in the proof of Lemma 1 to define the 

collection ~ of rays. Since Q is finite, we may order the rays in a clockwise 

direction, letting W, denote the closed subset of S determined by consecutive 

rays Ri and Ri+l, 1 =< i =< n, where R1 U Rn.1 = H. By previous remarks, we may 

assume that W, =c l ( in t  W~), l<=i<_n. Thus to each i, 2 < i < = n - 1 ,  there 

correspond two lnc points of S, denoted qi, q~, where q', = qi.1 for 1 =< i =< n - 1. It 

is easy to show that each Wi set is convex, and we call Wi a wedge of S. 

Again by the Lawrence, Hare, Kenelly Theorem, we may assume that bdry W, 

is polygonal and select segments [qi, p,], [p'i,q'i] in. bdry W~, 1 =<i= < n (where 

ql E R~, q ' E  Rn.1 are selected in tire manner indicated previously). 

We decompose S by defining q/~,. .- ,  °//,,_1, each an appropriate collection of 

wedges of S. We assign wedges to the q/i sets in the following manner: Let W~ be 

in q/~, W2 in q/2, and let P~ = {q/l}, P2 = {q/l, °//2}. Inductively, assume that each of 

the wedges W~, . . . ,  VCj has been assigned to one of the sets q/~,. •., q/~, and that 

Pj = {q/l, • •., %} partitions these j wedges so that conv( U °//i) C $, 1 =< i =< I. Let 

V, denote the last wedge assigned to °//i (i.e., the wedge assigned to q/i having 

largest subscript). If necessary, relabel the Vi and corresponding q/i sets so that 

for 1 =< i~ < i2 =< l, V~, precedes Vi2 in our ordering. We assign Wj+, in the 

following manner: If conv [VCj.1 U (U °//i)] C_ S for some i, choose i0 to be the 

largest such subscript i, and assign Wj+, to q/~. In this case, let Pi+l = 

{q/~, • • ", q/l}. If no such i exists, assign Wj+~ to q/~÷l, and let Pj.~ = {q/~, • •., %+~}. 

In either case, Pj+~ partitions the family { W , . . . ,  Wj+I}. Since there are finitely 

many wedges, the inductive procedure must end in a finite number of steps, and 

we may assume that the last partition P~ = {q/l, '" ", 0//~} partitions the family 

{W~,. . . ,  W~} so that conv(U qL)C S, l _ - i  -< k. The integer k defined above 

will be called the convex cover order of S with respect to p. We will prove that 

k = m - 1 .  
For the remainder of the argument, we will let V~ denote the last wedge 

assigned to ~L, 1 - i =< k - 1, and let Vk denote the first wedge assigned to q/~. 

Moreover, we relabel the q/, and corresponding V~ sets so that for 1 =< i~ < i2 =< k, 

V~, precedes V~ in our clockwise ordering. 

LEMMA 3. In our assignment of wedges, for 1 ~ i  < k, cony (Vi U Vk)~ S. 

PROOF OF LEMMA 3. Since conv( U q/i) C_ S, it is easy to see that 
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conv (V~ O (U a//,)) would lie in S, and in our partitioning procedure, Vk would 

have been assigned to q/j for some 1 =< j < k, a contradiction. 

LEMMA 4. If  S has convex cover order k with respect to p, then S contains k 

visually independent points x~, . . ., x~ with xi E (int Ui - c o n v  (p, q~, q'~)) U (q~, q~) 

for appropriate wedges U1,"  ", Uk of S (ordered in a clockwise direction), 

U~ = V1, U~ = Vk. Moreover, xl, xk may be selected as close as we wish to q ',, qk 

respectively. 

PROOF OF LEMMA 4. Applying induction, the assertion is trivial for k = 1,2, 

so we assume it true for all positive integers less than k, to prove for k. Consider 

the collections of wedges q/l , '"  ", q/,. By Lemma 3, conv(Vl U Vk)¢~ S, and 

there are two cases arising from the different ways conv(Vi U Vk) can contain 

points outside S: (1) For some wedge between V~ and Vk, there is a correspond- 

ing member  of Q which lies on the p side of L(qI,  qk). (2) Case 1 does not occur 

and one of p ~, pk lies beyond L (q'l, qk) from p. 

Case 1. Suppose that for some wedge between V1 and Vk, a corresponding 

member  of O lies on the p side of L(q~,q~)= L. Among the q and q' points 

having this property, examine those whose distance to L is maximal, and from 

these select the one having largest subscript j. Assume it is q)_~ =qs and 

corresponds to Ws. 

Let M be the line through qj parallel to L. Now the set S' defined as the union 

of V1, Wj_~, and the wedges of S following V1 and preceding W/-1 is clearly of 

the type considered in the hypothesis and has convex cover order t < k 

according to the procedure involved in our assignment of wedges. (Clearly t is 

the largest integer l for which members of °111 are contained in S'.) Note that if 

1/, C_ S', then V, must be the last wedge in S', since every wedge following V, has 

been assigned to ~//j for some j > t (by our labeling). By the induction 

hypothesis, S' contains points x~, . . . ,  x, visually independent via S' (and hence 

via S), and satisfying our specified requirements. Similarly let S" be the union of 

Vk and the wedges of S following V, and preceding Vk. Then S" satisfies our 

hypothesis. Also, each of V,÷I,. •., V~ lies in S", so S" has convex cover order at 

least k -  t. Hence there are points y,+l, "" ",yk in S" which are visually 

independent via S" (and via S) and which satisfy our requirements. Certainly 

i n t ( S ' N S " ) = ~ ,  each of X l , . . . , x ,  precedes the ray R(p, qj), and each of 
y,+l," • ", yk follows R(p, qj). 

We assert that x~, • •., x,, y,+~, • • -, yk are visually independent via S: Clearly by 

our selection of qj, for 1 < r < t, each x, is in S ' -  V1 and must lie on M or 
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beyond M from p. For t + 1 _-_5 s < k, each y~ is in S" ~ Vk and must lie beyond M 

from p. Also, by our induction hypothesis, we may assume that xl and yk are 

beyond M. Therefore,  if [xr, ys] _ S for some 1 < r -< t and some t + 1 < s < k, 

then qs E i n t  conv {p, xr, ys} C_ int S, and qj could not be an lnc point for S, clearly 

impossible. Hence the points are indeed visually independent.  The remaining 

part of the inductive hypothesis is easy to verify, and the proof of Case 1 is 

complete. 

Case 2. Suppose that Case 1 does not occur and that pk lies beyond 

L(q~, qk) = L from p. (The proof for p'l beyond L is similar and will be omitted.) 

Let S' denote the union of V~ and the wedges of S which follow V1 and precede 

Vk. Then S' has convex cover order  k -  1 and we may apply our induction 

hypothesis to obtain visually independent  points x~, . . - ,  xk-l. Since every lnc 

point between q'z and qk is on or beyond L, our inductive hypothesis assures us 

that x2,. •., x~_~ see no points on [pk, qk) via S. Again by our hypothesis we may 

assume that xt sees no point on [pk, qk ) either. Then for an appropriate choice of 

xk in Vk, x l , . . . ,  xk are visually independent via S. The rest of the argument is 

easy, finishing Case 2 and the proof of Lemma 4. 

Now since S is m-convex, S has no more than m visually independent  points. 

Thus by Lemma 4, S must have convex cover order  m - 1, and S is the union of 

the m - 1 convex sets Si = conv(LI 0//i), 1 _-< i _-< m - 1, completing the proof of 

the theorem. 

COROLLARY 1. Let S be a closed set in the plane. Let p E ker S ~ ~ ,  and for H 

some line containing p, assume S C_ cl H1. Then for m >= 2, S is m-convex if and 

only if S is the union of m - 1  convex sets. 

COROLLARY 2. Let S be a closed set in the plane, Q the set of Inc points of S, 

with p ~ [(bdry S) fq (ker S)] ~ Q ~  ~ .  Then for m >- 2, S is m -convex if and only 

if S is the union of m - 1  convex sets. 

PROOF. Since p ~ Q, we may select a neighborhood N of p such that N N S is 

convex. Then a hyperplane H supporting N N S at p will have the required 

property. 

COROLLARY 3. Let S be a closed m-convex set in the plane with p E ker S ~  O. 

Then S is a union of 2(m - 1) = 2m - 2 or fewer convex sets. 

PROOF. Let H be any line through p and apply Theorem 1 to c lHl  tq S and 

cl H2 N S. 
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3. Applications of Theorem 1 

In this section we present three remarkably different kinds of decomposition 

theorems which may be proved from Theorem 1. 

THEOREM 2. Let S be a closed m -convex set in R 2 with p E ker S N bdry S ~  0 .  

Then S is the union of 2m - 3 or fewer convex sets. 

PROOF. The set S may obviously by expressed as the union of an m-convex set 

and an (m - 1)-convex set, each satisfying the hypothesis of Theorem 1. 

THEOREM 3. I f  S is any closed 4-convex subset of the plane, then S is the union 

of 6 or fewer convex sets. 

PROOF. If S is not simply connected, then S is the union of 5 or fewer convex 

sets by a theorem of Guay [3]. Hence assume S is simply connected. Also, we 

may assume that S is connected, for otherwise the bound may be lowered to 4. 

In case Q = 0 ,  S is convex [7], and the result is trivial. For Q ~ 0 ,  select q in Q 

and define sets Sq = {x: [x, q] C_ S} and S q = {x: [x, q] ~ S} (called the star and 

anti-star of q in S, respectively). The set Sq is closed and since q E bdry S, we 

have q E ker Sq n bdry Sq. Using the simple connectedness of S, it is easy to show 

that Sq is 4-convex, and by Theorem 2, Sq is the union of 2 . 4 -  3 = 5 convex sets 

C~,.-- ,  C5. Using the fact that q E Q, it is easy to show that for x, y in S 4, 

[x, y] C_ S, and again by the simple connectedness of S, 6"6 = c o n v  S q _C S. Hence 

S = U6=~ C~, the desired result. 

REMARK. By Example 3 in [5], the bound for a closed planar 4-convex set is no 

lower than 5. Hence the best bound is either 5 or 6. 

The final two theorems of this section deal with the case in which cony Q _c S. 

THEOREM 4. Let S be a closed m -convex set in the plane, m >= 2, with Q the set 

of Inc points of S. I f  conv Q c_ S and int conv Q = O, then S is expressible as a 

union of m - 1 convex sets. The bound is best possible for every m. 

PROOF. By comments in [1], we may assume that no component  of S - Q is a 

segment. Also, we may assume that Q is not a singleton set, for then the proof is 

easy. if S is 2-convex the result is trivial, and we assume the result is true when S 

is j-convex, 2_-< j < m, to prove for m. 

In case S - Q is not connected, then S - Q has at most m - 1 components  

$1, • • ", Sk, k _-< m - 1. It is not hard to show that each set cl Sj has at most m~ - 1 

visually independent points and is m~-convex, where 2_-< ml < m and where 
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EL1 (mi - 1) = m - 1. Then by our induction hypothesis each set cl S, is a union 

of m~-  1 convex sets, and S is a union of X,k;l(m~ - 1) = m - 1 convex sets, 

finishing the argument. 

In case S - Q is connected, then it is easy to show that S has m - 2 lnc points, 

and S is a union of m -  1 convex sets by a theorem of Guay and Kay [4, 

Theorem 1]. Clearly the bound of m -  1 is best possible, and the proof is 

complete. 

THEOREM 5. Let S be a closed m-convex set in the plane, m >- 2, with Q the set 

of lnc points of S. I f  conv Q c_ S, then S is a union of 3m - 2 or fewer convex sets. 

PROOF. The proof of this result is lengthy. First we shall show we may assume 

that Q is finite (Lemma 5), next that each component  of S - cony Q is convex 

(Lemma 6), and that S - Q is connected (Lemma 7). Then we define a subset T 

of S satisfying Theorem 1, Corollary 2, and show that the remaining points of S 

lie either in conv Q or in one of at most 2(m - 1) components  of S - conv Q. For 

the sake of brevity, some of the easy details of the argument are omitted. 

Without loss of generality, assume S is connected, for every component  of S 

not containing Q is necessarily convex. Also, it is clear that S must be simply 

connected. By earlier remarks, we may assume that S is bounded and that 

S = cl(int S). And by Theorem 4, we may restrict our attention to the case in 

which int conv Q # O. 

LEMMA 5. To any finite subset F = {x, : 1 _-< i _-< k } of S there corresponds an 

m -convex set T having finitely many lnqpoints, with F C_ T C_ S. Hence we may 

assume that S has finitely many Inc points. 

PROOF OF LEMMA 5. Let F = {x,: l  _-<i_- < k} be any finite subset of S, and 

without loss of generality, assume that the points of F are indexed so that 

x, E S - c o n v Q  for l_-<i_-_n and x ~ E c o n v Q  for n_-<i_-<k. By a lemma of 

Valentine [10, Lemma 1], each point in F sees some point of Q (and hence some 

point of cony Q)  via S. Moreover,  if x ~  conv Q, then x necessarily sees some 

point y in bdryconv Q such that [x, y ) n c o n v  Q = 0 .  Therefore,  for each i, 

l<=i<<-n, we may define Ax = A . = { y : y  in bd ryconvQ,  [x,,y]C_S and 

[x~, y) n conv Q = 0}. Also, since S is simply connected and cony Q c_ S, A, is 

necessarily connected, so A~ is an arc in bdry conv Q. 

We assert that the endpoints v, w~ (not necessarily distinct) of the arc A, lie in 

Q : Let a,, b, E A~ and assume for the moment  that ai, b~ may be selected so that 

a~ # b,. Then no point on A, between ai and b, may lie in Q. In case a~ E Q, then 

no point in bdry conv Q beyond L(x~, a~) from b, may lie in Ai, and we may select 
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v~ = a~. If a ~  Q, then it is not hard to show that there are points of Q beyond 

L(x~, a~) from b~, and we may select such a point v so that the arc va'-'~ in 

bdry conv Q has minimal length. Then [v, a~] U [a,, x,] _C S, no point of Q is in 

conv{v ,a~,x~}-[v ,x~] ,  so by a result of Valentine [8, Corollary 2], 

conv{v, a,, x~} C_ S, and x~ sees v via S. Then using the fact that b'~ has minimal 

length, it is easy to show that v E A~. Since v E Q, x~ can see no point of 

bdryconv Q beyond L(x~, v)  from a~, and v = v, is the required point. A similar 

argument holds for b~ to produce w~, finishing the argument. In case {a,} = {b~} = 

A,, the previous argument may be adapted to show that a~ E Q, and the assertion 

is proved. 

For each i, 1 -< i =< n, let W~ denote the component of S ~ conv Q containing 

x,, and let B, denote the subset of convQ corresponding to W, - -  i.e., 

B~ = cl W~ n bdry conv Q. By earlier remarks, it is clear that for y in W~, Ar C_ B~. 

Moreover, since S is locally starshaped [5, Lemma 2], for s in B,, there is some y 

in W~ such that s E A r ,  and B, = O{Ar :y  in W,}. Now for s , t  in B,, we may 

select y, z in W~ such that [y, s] U [z, t] _C S. Since W~ is locally convex and 

connected, it is polygonally connected, and there is a path A in W~ C_ S - c o n v  Q 

from s to t. Then )t cannot intersect [s, t] C_ conv Q, and it is easy to show that 

there is an arc in B~ from s to t. Clearly B~ is closed, so B~ is an arc q~q',. Also, by 

earlier remarks, ql, q', E Q. 

Define T = (U;'=1 W,) u (conv Q). It is easy to show that T is an m-convex 

subset of S. Moreover, since S is locally starshaped and W~ is polygonally 

connected, an earlier argument may be adapted to show that the set of lnc points 

of T lies in { q ~ , q ; : q ~ = c l W ~ n b d r y c o n v Q ,  l <= i <-<_ n}. Therefore, by the 

Lawrence, Hare, Kenelly Theorem, it suffices to assume that Q is finite, finishing 

the proof of Lemma 5. 

LEMMA 6. Without  loss of  generality, we may  assume that each component  W~ 
of  S ~ conv Q is convex. 

PROOF OF LEMMA 6. Assume that some component W~ of S - cony Q is not 

convex, and let Q,~ O denote the set of Inc points of cl W, By the proof of 

Lemma 5, Q, c {q,, q'~}, where _ q~q ~ = cl W~ n bdry conv Q. Let L be a line which 

contains q,, q'~ and which supports conv Q, and let L1, L2 denote the correspond- 

ing open halfspaces, with conv Q c_ cl L2. Then using an argument employed in 

[4, lemma 6], L~ n W~ is convex and each of the two (or fewer) components of 

L2 n w~ is convex. If L2 n w, has two components, then S may be written as the 

union of two convex sets and an (m -2)-convex set T. In case L2A W, is 

connected, then S is the union of a convex set and an (m - 1)-convex set T. In 
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either case, T f3 W~ is convex, and without loss of generality we may assume that 

W~ is convex. 

LEMMA 7. Without loss of  generality we may assume that S ~ O is connected. 

PROOF OF LEMMA 7. If S - O is not connected, then it is easy to show that S 

is expressible as the union of a convex set cl W, and an ( m -  1)-convex set 

c l ( S -  W~), for W, a component of S ~ O. 

Returning to the proof of the theorem, order the lnc points of S and the 

corresponding components of S - c o n v  O in a clockwise direction along 

bdryconvO.  By Lemma 7, to each component W, of S - c o n v O  there 

corresponds a pair q~, q'~ of lnc points of S (where q'~ follows q, in our ordering). 

By, the Lawrence, Hare, Kenelly Theorem, we may assume that bdry IV, is 

polygonal, and hence we may select segments [q,,p,],[p',q;] in bdry W~. Let 

L, = L(q,,p,),  L; = L(q'~,p'~). We will say that a point x is beneath L, if x is in the 

open halfspace L,1 determined by L, and containing W~. Similarly, x is beyond L~ 

if x is in the open halfspace L,2. 

Let W be any fixed component in S - cony O, and for convenience, assume 

W = W1. We assert that [ql, q~] fails to be in cl (L,1) for at most m - 1 of the lines 

L,, 1 < i =< n: Assume that [ql, q~] ~ c l (L, )  LI cl(Lj~), where 1 < i < j < n. Then 

pj sees no point of S beyond Lj. But q~ is necessarily beyond L,  and hence q~ is, 

too (since if q, fi q'l, then q~ follows q I and precedes q~ in our ordering). Thus for 

c, selected appropriately in (p,, q,), [c,, q,] lies beyond Lj and no point of [c,, q,) 

sees any point of [pj, qi) via S. Then clearly for every collection of halfspaces 

c l (L . )  which fail to contain [ql, q~], there is a corresponding collection of 

visually independent points of S, so at most m - 1 halfspaces have this property. 

Let M denote the associated collection of components of S - c o n v  O. 

Similarly, letting 3 denote the collection of components W, of S - c o n v  O for 

which [ql, q'l]~cl(L'~O, then 3 has at most m - 1  members. Define T =  

c l ( S -  t_J{W: W = W1, W E ~ or W E 3}). For W ~  M U 3 ,  every point of W 

sees [ql, q'x] via T, and for t in (q~,q~), t is bdry T N  ker T. Since T is a closed 

m-convex set, we may use Theorem 1, Corollary 2, to conclude that T is a union 

of m - 1 convex sets. Therefore, S is a union of 3(m - 1) + 1 = 3m - 2 or fewer 

convex sets, finishing the proof of Theorem 5. 

4. The general case 

A general decomposition theorem will require several preliminary lemmas. 

LEMMA 8. Let S be a closed m-convex set in the plane. I f  B is the closure of a 
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bounded component A of R 2 ~ S, then conv B is a polygon having at most m - 1 

sides. 

PROOF OF LEMMA 8. Certainly conv B is the convex hull of its extreme points. 

To see that conv B is a polygon, we show that it has at most 2m - 1 (and hence 

finitely many) extreme points: If conv B had 2m extreme points, they could be 

ordered in a clockwise direction along bdry cony B. Letting x~, x2," • ", X2r, denote  

these points, clearly the set {x2k: 1 < k < m} would be a set of m visually 

independent points of S, for otherwise A could not be connected. However,  this 

would contradict the m-convexity of S. Thus conv B may have at most 2m - 1 

extreme points. 

It remains to show that the polygon convB  has at most m -  1 sides. Let 

x~, x2, • •., xk denote the vertices of conv B, k _-> 3, where the points are again 

ordered in a clockwise direction along bdry conv B. Then A _C B _C conv B. We 

will select k visually independent points y~, . . . ,  ya of S. (For convenience of 

notation, let xk+~ = x~.) If (x,, x,+~) contains a point in S, let y, E (x,, x,+l)n S. 

Otherwise, (x,, x~+~) lies in a (possibly unbounded) component  of R 2 _ S, and this 

component  is distinct from A since A C_ conv B. Hence it is not hard to see that 

there is some component  S~ of S -  {x,, xi÷~} which lies in conv B such that 

x~, x~÷, ~ cl S, In this case, select y~ E S,. Then y,, • •., yk is a visually independent 

subset of S, for otherwise A could not be connected. Therefore  k _-< m - 1 and 

the proof of Lemma 8 is complete. 

LEMMA 9. Let S = clint S be a set in the plane. I f  R 2~ S has at least 

r = (n + 2)2 "-1 bounded components having closures BI, . . . ,  Br, n >= 0, and for 

each i, conv B~ is a convex polygon, then S has at least n + 3 visually independent 

points on U ~  bdry B,. 

PROOF OF LEMMA 9. The proof is by induction. If n = 0, then r = land clearly 

S has at least three visually independent points. Assume the result is true for 

integers less than n, n => 1, to prove for n. 

Consider the polygon P = cony (UT=~ B~) and let p be any extreme point of P. 

Then p is an extreme point of some cony B~, say of cony B,. Choose a line H 

supporting P such that H n P = {p}. Choose a line L through p which intersects 

int Br. Now if n + 2 of the sets B~, • • -, B, share a segment with L, then we can 

find n + 3 visually independent points in U7=1 bdry B,, finishing the argument. 

For since S = clint S, no two B sets share a segment. To each B~ sharing a 

segment with L, we may associate points p~,p', on L with B~ N L containing 

[p~, p'~] and p~, p'~ in bdry B~. Also, we may relabel the B sets and corresponding p 
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points so that p, < p~ _ - p 2 < ' " - - - p . + 2 <  p'+2. Clearly by selecting points x~ in 

bdry Be - L, x~ sufficiently close to p,  and y,+2 in bdry B,+2 - L, y.+2 sufficiently 

• close to p'+2, we have x , , .  •., x,+2, y.+2 a set of n + 3 visually independent  points 

of S. 

Hence  we may assume that L meets  at most n + 1 of the sets B,, • •., B, in a 

segment. Then from these r sets there are at least 

r -  (n + 1)=  (n + 2 ) 2 " - ' -  n -  1 

not sharing a segment with L, and each of these sets must lie entirely in one of 

the closed halfspaces determined by L. Hence  one of these halfspaces, say 

cl(Lj),  must contain at least (r - n - 1)/2 of the B~ sets, 1 =< i _-< r - n - 1. 

Consider the set 

S'= S U(U{B,: 1 < i <= r , B , ~  c l (LO}  ), 

Then S'  is a closed set having at least r '  => (r - n - 1)/2 bounded components  

which satisfy the hypothesis of the theorem. Moreover  

r - n - 1  _(n+2)2"-'-n-1 
2 2 

= ( n + 1 ) 2  " -2+2  "-2 n 1 
2 2" 

If n => 3, then 2 "-2 _-> n/2 + 1/2, and thus r '  => (r - n - 1)/2 => (n + 1)2 "-2. In case 

n = 1, then (r - n - 1)/2 = ( 3 -  2)/2 = 1/2, and since r '  is an integer, r'_-> 1 = 

(n + 1)2 "-2. Similarly, if n = 2 then (r - n - 1)/2 = (4- 2 - 3)/2 = 5/2, and r '  => 3 = 

(n + 1)2 "-2. We conclude that for n _-> 1, S '  has at least (n + 1)2 "-2 bounded 

components  in its complement .  Therefore,  by the induction hypothesis, S '  has at 

least n + 2  visually independent  points xl ," ' ,x ,+2 on U { b d r y B ~ : l = < i =  < 

r} fq cl(L~), and these points are also visually independent  via S. 

We assert that we may choose a point x.+3 on bdry B, which sees none of the 

points x,, • •., x.+2 via S: Recall that the line L contains points interior to B,. Let 

q denote  the vertex of the polygon conv B, which lies in the open halfspace L2 

and for which [p, q] C bdry conv B,. In case (p, q) N bdry B , ~  0 ,  then let x.÷3 be 

any member  of this set. Otherwise, fix.y E (p,q) and consider the set {x: x E 

bdry B, and (y, x) N B , g  0}. Then let x.+3 be any member  of this set in L2 and 

distinct from q. Clearly x.+3 sees no point of S in cl (L,), and xl, . . . ,  x.+3 is a set 

of visually independent  points. This completes  the induction and finishes the 

proof  of L e m m a  9. 
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COROLLARY 1. If S : clint S is an m-convex set in the plane, then R 2 ~ S has 

no more than (m - 1)2 m-4- 1 bounded components. 

PROOF. By Lemma 8, if B is the closure of a bounded component  of R 2 S, 

then cony B is a polygon (having at most m - 1 -_> 3 edges). Then by Lemma 9, if 

R 2 ~ S has r bounded components,  assuming (n + 2)2 "-~ _-< r < (n + 3)2 ", n > 0, 

then S has at least n + 3 visually independent points. Since n + 3_-< m - 1, we 

have r < (m - 1 ) 2  "-4, the desired result. 

LEMMA 10. Let S = cl int S be an m-convex set in the plane, m >= 3, with x E S. 

Then the set Sx = {y: [x, y] _C S} is k-convex, where 2 <-_ k <-_ (m - 1)22m-4+ 1. 

PROOF OF LEMMA 10. Suppose on the contrary that S~ contains at least 

k = (m - 1)22m-4+ 1 -> m visually independent points xl , ."  ", xk. Let A 1 , ' . . ,  Ar 

denote the bounded components  of R 2 _ S, where 0 -< r _-< (m - 1)2"-4 _ 1 by the 

corollary to Lemma 9. For each nonempty set A,, select a point b~ in A~ and 

examine the rays R (x, b,). Order  the rays in a clockwise direction and relabel the 

A~ sets so that R(x,  b~÷~) follows R(x,  b,) in our ordering. 

The rays define closed subset of the plane: If r _-> 2, let T, be the closed subset 

determined by R(x,  bi) and R(x,b~+~) relative to our clockwise orientation, 

1 = i _-< r (where r + 1 --- 1). At most one T~ set is not convex, and if this occurs, 

bisect the corresponding angle to yield two convex sets, T ,  and T,2. Hence we 

obtain either r or r + 1 closed convex T sets. In case r = 1, let T~, T2 be the 

closed halfspaces determined by the line L(x,  bl), and if r = 0, let T~ be the 

plane. Clearly in all cases T~ rl S is simply connected for each i. (Otherwise some 

ray R(x,  bi) would lie between R(x ,b , )  and R(x,  bi+~) in our ordering, 

impossible.) 

We assert that at least m of the points x~ , . . . ,  xk lie in one of the convex T 

regions: If fewer than m of the points xt , .  •., xk belonged to T, for each i, then 

there would be at most (m - 1 ) ( r  + 1)-< (m -1 )22" -4<  k points in all, a con- 

tradiction. 

Hence one of the regions, say T~, contains m of the x points. For  convenience, 

say x~, . . . ,  xm E Tx. By m-convexity of S, at least one corresponding segment, 

say [x~, x2], is in S. Hence [x, xl] U [x, x2] LI [x~, x2] C_ S with [x~, x2] tZ S~, denying 

simple-connectedness of T~AS.  Thus Sx is indeed k-convex, 2 < k  _-< 

(m - 1)22"-4+ 1, finishing the proof of Lemma 10. 

THEOREM 6. I f  S is any closed m-convex set in the plane, m >= 3, then S is the 

union of (m - 1)32 "-3 or fewer convex sets. 
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PROOF. Without loss of generality, we may assume that S = clint S, for 

otherwise S is the union of k segments and an (m - k ) - c o n v e x  set for some 

l < k < m - 2 .  

By [5, Theorem 2], there exist m - 1 or fewer points x i , "  ", x,,_, in S such that 

S = U ~'S~, where S~ = {y: [x ,  y]_C S}. By Lemma 10, each S~ is at most 

[(m - 1)22 "-`  + 1]-convex. Since x, E ker S, ~ O, by Corollary 3 to Theorem 1, 

each S~ is a union of 2[(m - 1)22 "-4] or fewer convex sets. Thus S is the union of 

(m - 1)[2(m - 1)~2 "- ' ]  = (m - 1)32 "-3 or fewer con'vex sets. 

COROLLARY 1. A closed set S in the plane is m-convex for some m >= 2 if and 

only if S is the union of finitely many closed convex sets. 

5. An example 

M. A. Perles has communicated the following example of a class of compact 

m-convex subsets of E 2, mentioned in an earlier paper of one of the authors [5]. 

Example. For each integer r => 2 and s _-> 1 a set S,.~ will be defined by first 

taking the vertices v ] , . . . ,  vr of a regular polygon in E 2 inscribed in a unit circle, 

and setting T =  U{[v,,v~]ll<-<_i<j<=r}. With 0 < 8  < ~-/10r put V =  T + S B ,  

where B is the unit disk. Hence, V consists of (2)  parallel strips of width 28 

joining one another at the points v~, with the outer corners being rounded off by 

disks of radius 8 centered at the v~, i = 1,. •., r. If K is the boundary of the set 

conv V then K consists of segments parallel to [v,, v,+]] and circular arcs C~ of 

radius 8, i = 1 , - . . ,  r, where each C, is less than a semicircle. Now divide each C, 

into 2s - 1 equal sub arcs with consecutive points of division labeled p~.~, • •., p~.2s 

(see figure). For each pair (p~.j,p~.s.j) let the tangents to C~ at p,.j and p,.~+j meet at 

P , .& "" . ,¢,.~ 

\ \  
\ \ \  

\ 

(s=S) 

Cl 
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q~.j, j = l , . . . , s ,  and put A..j=conv{p~.j,p,.,÷i, qJ .  Finally, define S,.,= 

V U(U{A,,jfl <=i <-r,l <=j<=s}. 
It can be easily verified that S,.s has the following properties, for each r => 2, 

s_->l: 

1) The points q~A,'" ", q~., are visually independent via S,,,. 

2) One may associate a point with each of the (2) parallel strips so that the 

resulting (2) points are visually independent via S,.~. 

3) Starting with the s points q,.1,'" ", q,.s for any i, points may be associated 

with each of the remaining (r - 1) 2 parallel strips not passing through v~ yielding 

s + (r -2 1) visually independent points. 

4) S,., is m-convex, where m = 1+ max{(2) ,  s +  ( r 2 1 ) } .  

5) Each of the points q~.~ can see each of qj.~ via S,., for each i #  j, 1 =< k =< s, 

1 _-< l _-< s; consequently, conv (A~.~ O Aj.z) C S,., for 1 =< i _-< r, 1 =<j =< r, 1 =< k =< s, 

l<=l<=s, and k#  l. 
6) If r is even and s _-> r, in order to cover S,., with the least number of convex 

subsets, choose the (2)  parallel strips together with one Ai., at each end per strip , 

leaving s - r + 1 sets A~,I not accounted for at each v. Opposite pairs of these 

remaining A~.j can be taken into convex subsets inside r/2 parallel strips yielding 

convex sets. A similar analysis yields the same number when r is odd. 

7) If s < r then all the sets A,., can be included with the (2) parallel strips. 

Since_ _Its--211<= ( 2 ) i f  and only if s =  < r - 1 ,  S,.~ is the union 8) of n closed, 

convex sets and is not the union of fewer than n, where 

n = max , 

Note that if s < r then S,., is an example of an m-convex set which is the union 

of m -  1 but no fewer convex sets, since in this case m -  1= ( 2 ) =  n. But 
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consider the set S = S,.~ where s = r 2_-> r (r => 2). S is then a compact,  planar 

m-convex  set with 

m=l+s+(r - l )  3 r 2 - 3 r + 4  [rs+l]>r 3 
2 = 2 ' n = t ~ J  = 2 - "  

It then follows that  

m3'2< n < x / ~ m  , 

so S is the union of less than m 3/2 convex sets but is not the union of (1/4)m 3/2 

convex sets, and m can assume the values of the infinite sequence  

5, 11 ,20 ,32 , . .  • . 

Hence ,  the best possible bound ,  while possibly not  as large as (m - 1)32 "-3 ,  

cannot be linear in m, in general. In higher dimensions,  the situation is infinitely 

worse since Perles has also constructed an example of  a compact  3-convex subset 

of E 4 which is not the union of a finite number of convex sets. 
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